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Hybrid-Mode Analysis of Coupled
Microstrip-Slot Resonators

KENJI KAWANO

Abstract —An advanced microwave and millimeter-wave integrated cir-
cuit element, that is, a coupled microstrip resonator with a tuning slot, or a
coupled microstrip-slot resonator, has been developed. As special cases, a
microstrip-slot resonator, coupled microstrip resonator, and microstrip
resonator have been investigated.

A hybrid-mode analysis is presented for obtaining resonant frequencies.
It is based upon Galerkin’s method in the Forier transform domain. The
Green functions in this domain, which are versatile and applicable to other
microstrip-slot structures, are shown in simple form.

Computed resonant frequencies and measured resonant values are com-
pared for aluminum substrates in the 3-7-GHz frequency range.

I. INTRODUCTION

ICROSTRIP resonators are indispensable circuit ele-

ments for microwave and millimeter-wave integrated
circuits [1]. They have been analyzed by many authors
[21-[5]. After microstrip resonators were analyzed by Itoh
[6], who used a hybrid-mode analysis in the Fourier trans-
form domain, the spectral-domain approach has been used
to successively solve various resonant structures [7]-[9].
Furthermore, Chew and Kong investigated resonant fre-
quencies of microstrip disk resonators through the
spectral-domain approach and perturbation theory [10].

Meanwhile, Aikawa has developed coupled microstrip
lines with tuning septums, which are useful for realization
of a tightly coupled directional coupler [11]. These struc-
tures, which include microstrip lines with tuning septums,
have been analyzed through the spectral-domain approach
[12]-[14].

However, to the best knowledge of the author, these
structures have not been introduced into resonators, al-
though they have been thought useful. To date, microstrips
and slots are located on only one surface of the substrate.

In this paper, a coupled microstrip resonator with a
tuning slot, namely, a coupled microstrip-slot resonator, is
presented as a circuit element for microwave and millime-
ter-wave integrated circuits. Such a structure is shown in
Fig. 1. This resonator has microstrips and a slot on each
side of the substrate. Furthermore, a hybrid-mode analysis
is presented for obtaining the resonant frequencies of this
resonator. It is based upon Galerkin’s method in the Four-
ier transform domain.

Manuscript received August 8, 1983; revised July 8, 1984.

The author is with the Musashino Electrical Communication Labora-
tory, Nippon Telegraph and Telephone Public Corporation, 3-9-11, Mid-
oricho, Musashino-shi, Tokyo 180, Japan.

As special cases, a microstrip-slot resonator, coupled
microstrip resonator, and microstrip resonator are also
investigated.

In Section II, the formulation process is described and
Green functions are derived. In Section III, computed
resonant frequencies are compared with measured values
for alumina substrates. Although the number of the basis
functions is small and functional forms are simple, it is
shown that both results agree relatively well.

II. ANALYTICAL METHOD

The hybrid-mode analysis based on Galerkin’s method
in the spectral domain is already conventional. As the
detailed analytical procedure is discussed in [6] and [15],
only a brief description will be given in this section. The
various analyzed microstrip-slot structures are shown in
Figs. 1 and 2. Fig. 1 shows a coupled microstrip-slot
resonator in which two microstrips of width 2W}, length
2 Xy, and separation 2S5, as well as a slot of width 2W,
and length 2.X,, are located on each side of a substrate of
thickness D. Fig. 2 shows a microstrip-slot resonator. It
was assumed that metals are infinitely thin and perfect
conductors, and the substrate material, whose permittivity
and permeability are €, and u,, respectively, is lossless. It
was also assumed for simplicity that the structure is sym-
metric with respect to the y-axis.

The electromagnetic fields in the spectral domain are
expressed by the Fourier transformed scalar potentials. For
instance

Ezi(n, y,B) = (k2= B2)d¢(n, y,B) (1a)
ﬁzi(n,y,,B)=(k?-ﬁz)\j/f(”s)’aﬁ) (1b)

where subscript i designates each region defined as 1, 2,
and 3 in Figs. 1 and 2, and where

2_ .2
ki =W,

(2)

where w is the angular resonant frequency, and ¢, and pu,
are the permittivity and permeability in region i, respec-
tively. B is the Fourier transform variable. {*(n, y, 8) and
$*(n, y, B) are the Fourier transformed electric and mag-
netic scalar potentials, respectively. Here, the Fourier
transformation is defined as follows:

f(n,y,ﬂ)=foo dz/A dxf(x, y, z)e/Fnxth2) 3)
e Y4
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Fig. 1.

where
—(n =0.5)a , for Hz odd mode in x
ky={ 4 @)
na .
Vi for Hz even mode in x.

- Applying the boundary conditions at shielding walls, the
Fourier transformed scalar potentials in (1) are derived
from the transformed Helmholtz equation. By substituting
the transformed fields, which include the scalar potentials
in the spectral domain, into the transformed boundary
conditions at interfaces at y=D and 0, the following
matrix equation, which relates the electric field and current
density components, can be derived:

éu(”,‘*’aﬁ) 612(”"0”3) 61\3(”,‘0,:8)
Gyu(n,©,B) Gzz(",wa‘ﬁ) Gy(n,@,B)
Gsl(”’w’ﬁ) Gy(n,0,B) Gss(”,w,ﬂ)’
G~41(”’°~’a,3) C~r'42(n,w,B) 643(”#'-’7,3)

where G,;, - -, Gy, are the dyadic Green functions in the
Fourier transform domain. J.(n,8), J(n,B), &.(n,B),
‘and &,(n,B) are the Fourier transformed currents and
fields at y=D. I (n,B), L(n,B), E.(n,B), and E,(n, B)
are the same parameters at y = 0. For instance

i = (¥ W JCkx B2)
J(n,B) f‘XRdzf—WRdeq(x,z)e (6)

where g = x and z, and J (x, z) is the strip current density
functions in the space domain.

Although the Green functions can be computed without
mathematical manipulation [16], [17], they have been ana-
Iytically obtained in order to reduce computer time. Their
expressions are shown in the Appendix in simple form. It is
to be noted that G,;, G,,, G,,, and G,, are related to the
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Fig. 2. Conceptualized external view of microstrip-slot resonator and
coordinate system.

strip currents, and G,,, G,,, G,3, and G, are related to the
slot fields. Other Green functions represent the interactions
between the strip currents and slot fields. As these Green
functions are not explicit functions of resonator geometry,
they are versatile and applicable to various microstrip-slot
structures. Although, up to this point, the formulation has
been exact, some approximation is now necessary to solve
(5).

To this end, Galerkin’s method in the Fourier transform
domain has been chosen, which enables us to eliminate the
unknown electric field and current density functions,
é,(n,B) and I (1, B). Let us expand the unknown strip
current density functlons J ,(n, B) and slot f1e1d functions
E ,(n, B) in terms of known basis functions J, m(vn B) and
E qm(n B), respectively.

G~14(”,wn3) jx("ug) é.(n,B)
G~24(nawaﬁ) ) {z(nng) _ éx(n,ﬂ) (5)
634(’1,‘0,,3) | Ex(n,B) ix(naﬁ)
Gu(n,w,B)| | E.(n,B) L(n,B)

A. Top Substrate Surface (y = D)

Tn,8)= L aplon(n.) (7a)

J(n,B)= Z o (75 B). (7b)
B. Botiom Substrate Surface (y = 0)

E(n )= % cubon(n.f) (s2)

E(nf)- ¥ duB () ()
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where a,,, b,, c,,, and d,, are unknown expansion coeffi-
cients.

Substituting (7) and (8) into (5), and taking inner prod-
ucts with J.,(m, B), Jy(mB), E(n,B), and E,(n,B),
respectively, a set of (K + L)X(M + N) simultaneous
equations with (K + L)X(M + N) unknown expansion

coefficients can be obtained

L M
Y Di(w)b,+ X Din(w)C,

m=1 m=1

K
Y D(e)a,+
1

N
+ Y D¥(w)d,=0 i=1,2,---,L (%)
m=1
K L M
Z Dizrjt(w)am—l_ Z ‘thrr%(w)bm-‘r Z thrz(w)cm
m=1 m=1 m=1
N
+ Y D*(w)d,=0 i=1,2,---,K (9)
m=1
K L M
2 Di(w)a,+ X Di(w)b,+ X Di(w)C,
m=1 m=1 m=1

+ i=1,2,---,M (9)

T M=

Di:i::(w) dm = O
1

K L M
Z Dz‘:rll(w)am+ Z Dlﬁ w)bm+ Z Dzﬁ(w)cm
m=1 m=1

m=1

+ % D*(w)d,, =0

m=1

i=1,2,---,N (9d)

where one typical matrix element is given by

D)= X [ dBT.(1,8)G(n,@,B) ], (n,B).

B (10)

The right-hand side of (9) has been derived by virtue of
Parseval’s theorem, since the strip currents and electric
fields are zero in the complementary regions at interfaces
y =D and y = 0. The characteristic equation for the angu-
lar resonant frequency can be obtained from (9) by setting
the determinant of the coefficient matrix D(w) equal to
Zero

|D(w)|=0. (1)

If the basis functions fqm(n, B) and E m(1, B) are cho-
sen such that their inverse Fourier transforms resemble the
actual unknown strip current density and slot field compo-
nents, good results can be obtained using only a few basis
functions [6], [18], [19]. This makes the matrix size of (11)
small, resulting in a necessity for less computer time. It was
also desirable that fqm(n, B)and E (1, B) can be analyti-
cally obtained, so as to reduce computer time. As the
assumption J, (x,z)=0 gives good results for a narrow
microstrip resonator [6], we set K equal to zero for the
coupled microstrip-slot resonator. Furthermore, only one
basis function has been chosen for each E (x,z) and
E_(x, z), respectively. This means L = M = N =1. There-

fore, their inverse transforms are

le(x,z)=11(x)-.]2(z) (12a)
Eq(x,2)=E|(x)E,(z) (12b)
Ezl(xaz)=E3(x)'E4(z)- (120)

The remaining problem is to determine functional forms.
For Ji(x) and J,(z), the following functions [6] are as-
sumed for the even-mode resonance of coupled
microstrip-slot resonator:

3

x + (S + Wy)
Jl(x)= (1+ —TR'— , SR<|X|<SR+2WR
0, elsewhere
(13a)
14
coSs —, zl< X
Jz(z)={ 2xg 121 X (13b)
0, elsewhere

For the odd-mode resonance, (13a) should be changed
antisymmetrically.

As far as the slot fields are concerned, the following
simple basis functions have been chosen for the
microstrip-slot resonator and even-mode resonance of the
coupled microstrip-slot resonator:

1, O<x<W,

E/(x)=(~1, —W,<x<0 (14a)
0, clsewhere
7wz
cos =, z|< X,
E,(z)= { 2X; 1< X (14b)
0, elsewhere
1, |x| < W,
E = 14c
(%) {O, elsewhere (14c)
z, lz| < X,
E = 144
a(2) {0, elsewhere. (14d)

Meanwhile, for the odd-mode resonance, the following
basis functions have been chosen:

E (x)=(14c) (15a)
E,(z)=(14b) (15b)
Ey(x)=(14a) (15¢)
E,(z)=(144). (1549)

The resulting characteristic equation to be solved is a

three-dimensional determinant, as follows:
Dii(w) Dii(e) Dif(w)
Di{(w) Dif(w) Dif(w)|=0.
Dif(w) Dfi() Dif(w)

(16)

Now, the boundary value problem is reduced to the
numerical seeking for the values of w. The method of
successive bisection [20] has been utilized.
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Fig. 3. Experimental geometries for (a) coupled microstrip-slot reso-
nator, and (b) microstrip-slot resonator.

L.

Experimental geometries for the coﬁpled microstrip-slot
resonator and microstrip-slot resonator are shown in Fig.
3(a) and (b). Microstrips, including input and output
terminals for electromagnetic power, as well as tuning
slots; are shown as solid lines and dotted lines, respectively.

The coupling gap between the resonator and terminal
strips was about 25 pm. An alumina substrate 25 X 25 X 0.3
mm with a relative dielectric constant of 9.6 has been
chosen. The metals were 0.02-pm-thick nickel-chromium
and 4-pm-—thick gold. As the experiments were made in

NUMERICAL AND EXPERIMENTAL RESULTS

- the open, the computation was performed in regard to the.

large shielding walls, with 24 = 30-D and H, = H,=10-D,
in order to avoid the effects of the side, upper, and lower
ground planes.

Fig. 4 shows computed and measured resonant frequen-
cies for the microstrip-slot resonator, versus microstrip
length 2 X,. Although simple basis functions are used, the
agreement between the numerical and experimental results
is relatively good. As seen in this figure, resonant frequen-
cies increase as slot width becomes large, which means that
the quantity of electromagnetic-field leakage into the lower
air region increases with slot width.
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Fig. 4. Computed -and measured resonant frequencies for microstrip-slot
resonator on alumina substrates versus microstrip length 2 X. €, = 9.6,
2Wg=D=03mm H =H;=10D,24=30 D, and2XL—2XR—-01
mm.

Fig. 5(a) and (b) shows computed and measured reso-
nant frequencies for the even- and odd-mode resonances of
the coupled microstrip-slot resonator versus coupled micro-
strip length 2 X. Similar to the case of the microstrip-slot
resonator, it is found that the numerical and experimental
results agree relatively well. These figures show that the
resonant frequencies are, respectively, strongly and weakly
affected by the tuning slot for the even- and odd-mode
resonances. :

The difference in the behavior of the resonant frequen-
cies between the even- and odd-mode resonances implies
the following meanings. For the even mode, there is strong
interaction between' the strips and a tuning slot. For the
odd mode, however, interaction between the two strips
becomes strong. As a result, slot width affects the even
mode more strongly than the odd mode.

V. CONCLUSIONS

The resonant frequencies of a coupled microstrip reso-
nator with a tuning slot, or a coupled microstrip-slot
resonator, have been investigated. Furthermore, a numeri-

cal method has been presented for obtaining resonant

-frequencies of a coupled microstrip-slot resonator. It was

based upon. a hybrid-mode analysis, where Galerkin’s
method in the Fourier transform domain was used.” The
dyadic Green functions, which are versatile and applicable
to various microstrip-slot structures, were analytically de-
rived to reduce computer time, and have been shown in
simple form.

In regard to the microstrip-slot resonator and even-rnode
resonance of the coupled microstrip-slot resonator, the
tuning slot can increase considerably the resonant frequen-
cies. Meanwhile, in relation to the odd-mode resonance,
the effect of the slot is small.
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Fig. 5. Computed and measured resonant frequencies for (a) even-mode
resonance, and (b) odd-mode resonance of coupled microstrip-slot
resonator on alumina substrates versus microstrip length 2 Xz. €, = 9.6,
2Wgr=D=0.3 mm, 28z =0.06 mm. H;=H,=10 D, 24=130 D, and
2X; =2Xz—0.1 mm,
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APPENDIX

In the following expressions, subscripts 1, 2, and 3 for i
designate regions 1, 2, and 3 in Figs. 1 and 2, while
k? = ey, and y2 = k2 + 7= 2
jsinh (v, H,)

we,-det
jsinh(y, H,) .

we;-det
sinh (v, H,)

k?-det
sinh (v, H, ) .

k}-det
= _ j'Sinh(Y1H1)
Gu(n,0,B) = we,-det
G~22(naw9:8) = _Gll(n’w’ﬂ)
sinh (v, H, )

ki-det
624(’1’ @, B) = G~13(n9 w, B)
G~31(n,w,,8)=C~?23(n,w,,B)
G~32(n’ waB) == Gl3(”a w, :8)
J

éu(”’w’ﬁ) =

‘81

Glz(n’w’ﬁ)z

2

(?13(n,w,,8)= &3

614(",“’”3) =

&a

5

623(’%“’,/3): 6

Ol B) = Gt
89
-{ g, + gg-tanh (v, D)+
{g7 8- tanh (1, D) sinh(yZD)cosh(yzD)}
5 - J
G34(n,w,,8) B Wl V1Y, det
81
. + tanh D)+
{gm g tanh (v, D) sinh(yzD)cosh(yzD)}
6'41(”,“”.8):_613(”""’:8)
G~42(n9w,B)=G14(nsw9B)
(?43(’17“)’[;):_6’34(”’“”8)
5 - —J
Gu(n,w,B)= O Y7, det
815
. + tanh D)+
{313 814 tan (Yz ) sinh(yzD)cosh(yzD)}

- det = { 'y, coth (v, H;)- tanh(v,D)+¢€,7, }
{72 tanh (v, H,)-coth (v,D)+ v}
g1=k,B{p v, tanh(y,D)/sinh(y, H,)+ 7,/ cosh (v, H,)}
82=n,v,(ki — B*)tanh(y,D)/sinh (v, H,)
+ v, (k3 - B?)/cosh (v, H,)

8=~ k,B(ki = k3)/(sinh(y, H,)-cosh (v, D)}
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det = {y,-coth(y,H,)-tanh(y,D)+e¢,v, }
(v, tanh (v, H,)-coth (v, D) + 7, }
84= erYlYZklz/{COSh(YlHly) Sihh(YzD)}
+ (k22 + k3B — k2k})/{sinh (v, H; ) cosh (v, D)}
— k?)tanh(v,D)/sinh (v, H,)
+v,(k3 — k2) /cosh (v, H,)
2k%)/{sinh(ylHl)-cosh(yzD)}
g7="2 [, (k2 — B*)(e,p,v2 +v2) coth (v, Hy)
+¥2 (k3 = B?){ e, tanh (v, Hy) + ., coth (v, Hy )}
g8s=11[p,v}(k? — B?){ e, tanh (v, H,) +p, coth (v, H,) }
-coth (v Hy) + (k3 = B2 ) e, + v})]
8o = (ki — B*)v1¥3e,u,{tanh (v, Hy ) coth (v; Hy) +1}
10= kB[ 1, (€.8,77 + ¥2) coth (3 H;)
+v{{e, tanh (v, H, )+ p, coth (v, H, )}]
n="k,Bvi[pv}{e tanh (v, H,)+ p, coth (v, H, )} v
-coth(v3Hy) + (&,1,v2 + v7)]
12 =K. BY1vs¢,4,{tanh (v, Hy) coth (v; H;) +1}
g1 = Yo [, (kF = k2) e,y + v}) coth (v, Hy)
+ y2(k3 — k2){e, tanh (v, H, )+ p,coth (v, H;) }]
g1 =11 [p,¥] (k7 — k2){ ¢ tanh (v, Hy)+p, coth (v, H,) }
-coth (v Hy) + (k3 — k2)(e,pv2 +v2)]
15= (k2- kf)ylyzze,p.,{tanh(ylHl)goth(y3H3)+1}.

gs=uy,(k2

= (kB + k3k; — k
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